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Supplemental Materials - Efficient Visual
Computing with Camera RAW Snapshots

Zhihao Li, Ming Lu, Xu Zhang, Xin Feng, M. Salman Asif, and Zhan Ma

Abstract—In this supplementary material, we provide addi-
tional information to further evidence the generalization of the
proposed ρ-Vision for various functionalities. Specifically, we first
compare the RGB-Vision and ρ-Vision frameworks using a real-
world hardware implementation in Sec. S.I. Then, we provide
details of our Unpaired CycleR2R in Sec. S.II and give proofs
of some equations in Sec. S.III. In addition, we demonstrate
the advantages of running classification and segmentation in the
RAW domain directly in Sec. S.IV and Sec. S.V, respectively. At
last, we show more visualization results in Sec. S.VI.

Index Terms—Camera RAW, RAW-domain Object Detection,
RAW Image Compression

S.I. A REAL-WORLD HARDWARE IMPLEMENTATION

A. Hardware System for Comparative Benchmark

A commodity hardware platform is used to assess the
efficiency of RAW-domain visual computing as illustrated
in Fig. S1a. It is built upon the Axera-Tech AX620A SoC
with a quad-core Arm Cortex-A7 processor, an NPU (Neural
Processing Unit), an ISP (Image Signal Processor), and other
subsystems. This AX620A SoC is primarily used to process
images and videos for vision tasks. Its ISP has two modes:
one is the Standard mode (AX620A ISP), and the other is
the AI mode (AX620A AI ISP). When using AX620A AI
ISP, onboard NPU is utilized to run various neural algorithms
like NN (Neural Network) denoising, by which AX620A SoC
claims its outstanding performance for low-light imaging.

We use the same RAW samples in the MultiRAW dataset
for a fair evaluation. The YOLOv8-S, recommended by the
AX620A SoC specification, exemplifies the detection task. Its
default settings are assumed for consistency and reproducibil-
ity. Upon completing the training of YOLOv8-S, its model
is quantized into INT-8 precision using AX620A’s official
quantization tool and subsequently deployed on AX620A’s
NPU for inference.

Metrics such as mAP, latency, power consumption, and
memory usage are collected for quantitative comparison. With
this aim, when executing the YOLOv8-S, a UC96B power
meter is connected to the AX620A SoC to collect the power
usage, latency is measured using a timer library (C++), and
the memory consumption is reported using the default memory
monitoring tool provided by the AX620A SoC.

• ρ-Vision trains YOLOv8-S using RAW samples (from the
iPhone XSmax, a subset of the MultiRAW dataset). Then,
such a RAW-domain YOLOv8-S is quantized using the
abovementioned rules and deployed on the NPU for de-
tection. For task inference, RAW images are fed directly
to the neural model (without requiring ISP computations).
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Fig. S1: RGB-Vision vs. ρ-Vision. (a) The hardware system
uses AX620A AI SoC. A UC96B power meter is connected
for measurement; (b) ρ-Vision framework trains and tests
models using RAW images directly, completely bypassing
the ISP; (c) Traditional RGB-Vision framework requires the
ISP to generate RGB images for model training and testing;
(d) Average Gains of ρ-Vision to RGB-Vision. Metrics
are normalized to the results generated by the RGB-Vision
pipeline.

Following the common practice, 70% RAW images are
used to train RAW-domain YOLOv8-S, and the remaining
30% RAW images are tested using quantized YOLOv8-S
on NPU. Fig. S1b plots the processing steps in ρ-Vision.

• RGB-Vision applies the AX620A ISP onboard to convert
RAW images to their corresponding RGB formats for
subsequent computations. The training and testing split is
the same as in the ρ-Vision paradigm. The RGB-vision
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iPhone → AX620A (D) iPhone → AX620A (T) AX620A (T) → AX620A (T) iPhone → iPhone

Fig. S2: Impact of ISP used in RGB-Vision on the detection task. The setup of “Training ISP→Testing ISP” indicates
the “Training ISP” used to generate RGB images for training and the “Testing ISP” used to generate RGB images for testing
respectively. Default parameters used by the ISP are marked with “(D)” and expert-tuned parameters used by the ISP are
annotated with “(T)”. The first two columns illustrate domain discrepancies when training and testing using different ISPs,
while the last two columns demonstrate how ISP quality (with expert tuning) affects object detection accuracy. Zoom for better
details.

TABLE S1: Detection performance for various ISP combinations.

Domain Training ISP Testing ISP Car Person Traffic Light Traffic Sign mAP

RGB-Vision

iPhone AX620A (Default) 0.324 0.022 0.134 0.213 0.173
iPhone AX620A (Tuned) 0.696 0.108 0.523 0.253 0.397
AX620A (Tuned) AX620A (Tuned) 0.788 0.225 0.661 0.443 0.529
iPhone iPhone 0.798 0.219 0.693 0.474 0.546

ρ-Vision - - 0.796 0.241 0.655 0.490 0.546

processing pipeline is pictured in Fig. S1c.
All associated hardware drivers, system images, benchmark

code, and datasets will soon be available at https://njuvision.
github.io/rho-vision to encourage reproducible research.

B. Experimental Analysis
Overall Evaluation. Fig. S1d showcases the efficacy of

the proposed ρ-Vision paradigm. Compared to RGB-Vision, it
provides a notable 3% detection accuracy increase. The same
YOLOv8-S is just retrained using RAW images without any
dedicated network model engineering. It reduces the latency by
72%, a critical advancement for autonomous driving applica-
tions. Furthermore, the 62% reduction in power consumption
presents significant advantages of ρ-Vision for AIoT devices,
where energy efficiency is crucial. The 36% decrease in mem-
ory usage also enables the deployment of ρ-Vision on lower-
cost embedded devices. The performance improvement owes

to better-preserving scene information in the RAW domain.
The skipping of ISP generally avoids the extra computations
and memory caching, leading to a noticeable cost and latency
reduction. These promise the encouraging potential of ρ-
Vision in advancing computer vision applications for better
task performance, faster response, and less cost.

Impact of ISP used in RGB-Vision Paradigm. In Fig. S1c,
the AX620A ISP is expert-tuned. This is because default
settings used in AX620A ISP cannot provide a decent result,
which motivates us to study the impact of various ISP config-
urations on task efficiency. The ISP used in the iPhone XSmax
is also evaluated as Apple experts deliberately calibrate it for
outstanding quality. Note that the ISP is only required in the
RGB-Vision framework.

Similarly, we use iPhone RAW images from the MultiRAW
dataset in experiments. We have different ISP combinations for
RGB-Vision to train and test RGB images (converted from the

https://njuvision.github.io/rho-vision
https://njuvision.github.io/rho-vision
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same set of iPhone RAWs). The training and testing split is
the same for either RGB-domain or RAW-domain processing.

As in Table S1 for the RGB-Vision category, the training
ISP converts iPhone RAW images to the corresponding RGB
samples to train YOLOv8-S, while the testing ISP is used to
generate RGB samples (from iPhone RAW images) for testing
previously trained YOLOv8-S.

The setup using the same iPhone ISP to generate RGB
images for training and testing provides the best performance
(see the last row of RGB-Vision in Table S1). Although we
have tried our best to fine-tune the AX620A ISP to mimic the
iPhone ISP, the setup using the same AX620A ISP (Tuned)
to generate RGB images for training and testing is inferior to
the case using the iPhone ISP that is deliberately calibrated
by Apple imaging experts, e.g., 0.529 vs. 0.546 mAP. The
detection performance is sharply degraded if we use different
ISPs to generate training and testing RGB samples (see 1st
and 2nd rows of Table S1 in RGB-Vision), suggesting that
the ISP configuration is vital for task performance.

Fig. S2 visualizes detection results on testing images, further
confirming the observations in Table S1 where inappropriate
use of ISPs would lead to catastrophic performance degrada-
tion (see missing objects in the first column).

By contrast, under the ρ-Vision setup, YOLOv8-S is trained
and tested on iPhone RAW images directly. The average
detection performance is the same as using the iPhone ISP for
both training and testing in RGB-vision. More importantly,
expert tuning or dedicated calibration of ISP is no longer
required. All of these suggest the encouraging prospects of
using ρ-Vision in vision tasks.

Challenging Imaging Conditions are additionally exam-
ined to compare the efficiency of ρ-Vision and RGB-Vision
pipelines. Two representative contexts are considered: the low-
light illumination with high-noise levels and the scenario with
high dynamic range (HDR) conditions.

Low-light illumination with high noise scenario is evaluated
with object classification. We closely follow [S1] to perform
the task, which involves training a MobileNet-V1 using noise-
augmented ImageNet samples, then testing real-world noisy
images acquired using a Google Pixel camera under low-
light/high-noise conditions.

As for RGB-Vision, we directly train an RGB-domain
MobileNet-V1 using the ImageNet dataset (RGBIN) (with
noise augmentation). In the meantime, we respectively use
AX620A ISP and AX620A AI-ISP to transform RAW images
acquired using Google Pixel camera (RAWGP) to the corre-
sponding RGB datasets, e.g., RGBAX and RGBAX−AI to test
aforementioned RGB-domain MobileNet-V1.

As for ρ-Vision, we first train our Unpaired CycleR2R
model using clean RAW and RGB images from the Google
Pixel and ImageNet datasets, i.e., RAWGP and RGBIN, re-
spectively. Then, we use the invISP module in this Unpaired
CycleR2R to convert RGB images in ImageNet to simulated
RAW samples, i.e., simRAWIN, to train the RAW-domain
MobileNet-V1. The same noise augmentation is performed
upon simRAWIN. Such a RAW-domain MobileNet-V1 tests
RAW samples directly from RAWGP.

Evaluations presented in Table S2 clearly evidence the supe-
riority of ρ-Vision paradigm. Notable reductions are reported
for power consumption, memory footprint, and computational
latency, owing to removing the ISP subsystem in the proposed
ρ-Vision framework.
ρ-Vision only requires 0.006 J for task inference, compared

to 0.128 and 0.162 J consumed by RGB-Vision methods
using AX620A ISP and AX620A AI ISP. Furthermore, it
exhibits the lowest latency at 2.71 ms, a substantial decrease
from the 48.65 ms and 64.75 ms observed with the methods
using AX620A ISP and AX620A AI ISP. This is because
small-size images, e.g., 224×224, are used in the classifier,
but ISPs must process images with the original resolution
(2560×1440). Such a sharp increase in data volume increases
power consumption, memory footprint, and latency.
ρ-Vision also presents better classification accuracy. We

attribute it to noise separation and suppression in the RAW
domain being more tractable than in the RGB domain (after
a serial nonlinear transformation) [S1].

Notably, the AX620A AI ISP does not enhance classifica-
tion performance under such extreme low-light conditions, as
AX620A AI ISP models are typically trained for some specific
cameras and may not generalize well to a new camera from
the above discussions.

HDR conditions are studied with the detection task. 24-bit
LUCID TRI054S RAW images (RAWLT) covering the tunnel
exit scenes are used. These HDR scenes are often encountered
when driving through the tunnel and simultaneously experienc-
ing extraordinarily bright and dark regions.

As for ρ-Vision, we train the RAW-domain detector
(YOLOv8-S) using RAWLT. In contrast, RAW samples in
RAWLTare first converted to RGB counterparts using the
AX620A ISP to train the RGB-domain detector used in the
RGB-Vision framework.

Besides the reductions in power consumption, memory foot-
print, and latency, the ρ-Vision framework achieves superior
mAP across all categories, particularly in detecting traffic
lights and signs (e.g., labeled as “Tr. L.” and “Tr. S.”) in
Table S3. The improvement in mAP indicates the enhanced
capability of the ρ-Vision to discern features in HDR con-
ditions. This is essential for applications such as autonomous
driving, where accurate and prompt traffic detection is crucial.

The combination of reduced latency, lower power con-
sumption, and memory usage, along with higher mAP scores,
affirms the effectiveness of the ρ-Vision framework in chal-
lenging HDR scenarios, highlighting its potential for real-
world applications where both performance and efficiency are
of paramount importance.

S.II. DETAILS OF THE UNPAIRED CYCLER2R

A. Architecture of Basic Neural Network

Table S4 details the architecture of the basic neural network
E (·) used in Unpaired CycleR2R. This basic network E (·)
consists of five layers in total and is used for IEM (Illumi-
nation Estimation Module), AWB (Auto White Balance), BA
(Brightness Adjustment), and CC (Color Correction). The first
layer applies the 5×5 convolution with 32 channels, and the
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TABLE S2: Classification Accuracy of RGB-Vision and ρ-Vision Frameworks Under Low-Light Conditions. Latency
measures the total processing duration by both the ISP and model, as well as the power consumption (Power.) and memory
requirements (Mem.) for each method, besides the Top-1 classification accuracy (Acc.). *The results of Google Pixel ISP are
copied from the paper [S1]. The “invISP” is used in ρ-Vision to generate simulated RAW samples to train the classifier, while
RGB-vision methods do not require this step. RGB-Vision methods train the RGB-domain classifier using RGB images from
the ImageNet dataset (RGBIN) while ρ-Vision trains the RAW-domain classifier using simulated RAW images generated using
the invISP. RAW images acquired by Google Pixel (RAWGP) [S1] under extreme low-light conditions are used for evaluation.
In the RGB-Vision pipeline, these RAW images are converted using different ISPs to RGB samples for using the RGB-domain
classifier, while in the ρ-vision paradigm, these RAW images are directly fed to the RAW-domain classifier.

Method invISP Classifier Latency Power. Mem. Acc.
Train Train Test ISP Model

RGB-Vision w/ AX620A ISP - RGBIN RGBAX 48.65 ms 2.73 ms 0.128 J 65 MB 0.0
RGB-Vision w/ AX620A AI-ISP - RGBIN RGBAX-AI 64.75 ms 4.36 ms 0.162 J 81 MB 0.0
RGB-Vision w/ *Google Pixel ISP - RGBIN RGBGP - - - - 1.4
ρ-Vision RGBIN, RAWIN simRAWIN RAWGP 0 ms 2.71 ms 0.006 J 25 MB 19.8

TABLE S3: Comparative Analysis of RGB-Vision and ρ-Vision Frameworks in High Dynamic Range (HDR) Scenarios.
The RAW-domain detector is calibrated with 24-bit LUCID TRI054S RAW images (RAWLT). The RGB-domain detector is
trained and evaluated on RGB images generated using AX620A ISP (RGBAX). Latency encompasses the total processing time
of both the ISP and the detection model. We present the power consumption (Power.) and memory footprint (Mem.) alongside
the mean Average Precision (mAP). Abbreviations “Tr. L.” and “Tr. S.”, denote traffic light and traffic sign, respectively.

Framework Detector Latency Power. Mem. APCar APTr. L APTr. S mAP
Train Test ISP Model

RGB-Vision RGBAX RGBAX 48.55 ms 17.07 ms 0.152 J 55 MB 81.3 27.9 61.2 56.8
ρ-Vision RAWLT RAWLT 0 ms 18.18 ms 0.058 J 35 MB 84.8 35.5 69.7 63.3

subsequent two layers use 3×3 convolutions and 64 channels.
The final two layers use simple linear layers instead.

The example of “Conv: k5c32s2” stands for a convolutional
layer having convolutions with spatial kernel size at 5×5
(k5), 32 channels (c32), and a stride of two based spatial
downsampling (s2) at both dimensions. The same convention
is applied to the linear layer (Linear) and average pooling layer
(Avg Pool). “Leaky RELU” [S4] is used as the activation, and
“Mean” stands for the average operator in the spatial domain
for each channel. Considering the output channel of E (·) is
specific for different purposes across aforementioned modular
components, we mark it using a predefined variable Cout.

B. Architectures of Discriminators

As in the main paper, Dcolor and Dbright are applied to
measure the similarity between generated and real images.
Dcolor stacks five convolutional layers with Leaky ReLU [S4]
and Dbright uses five linear layers instead to process 1D
grayscale histogram. Details of kernel size, channels, and
strides are listed in Tabel. S4.

C. Gamma Correction Standard

Gamma correction matches the non-linear characteristics of
a display device or human perception [S3]. We adopt the
correction function recommended in ITU-R BT. 709 stan-

dard [S4], noted as fg , which is widely used in commodity
ISPs today [S4].

y = fg ◦ xcc

=

{
12.92 · xcc, xcc ≤ 0.00304,

1.055 · x1/2.4
cc − 0.055, xcc > 0.00304.

(S1)

Correspondingly, the inverse function gg is:

xcc = gg ◦ xg

=


y

12.92
, y ≤ 0.04045,(

y + 0.055

1.055

)2.4

, y > 0.04045.
(S2)

S.III. DETAILS OF Distribution Analysis of RAW images

A. The proof of the equation (28)

We start from the loss function L:

L =
1

H ×W
(w ∗ (P − 0.5) + b− ŷ)

2
, (S3)

where w ∈ RS×S is the convolution kernel with kernel size
S.

Then the partial derivative of w ∈ w could be formulated
as:

∂L
∂w

=
1

H ×W

H∑
j=0

W∑
i=0

2 (yij − ŷ) (xij+mn − 0.5) (S4)
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where xij+mn ∈ P and mn is the shift position of w accord-
ing to the kernel center of w. yij is the convolution output
at position ij. To calculate yij , we define xw

ij as a window
of P with the same size of w located at ij. Considering the
similarity among adjacent pixels, for a neighborhood pixel of
xij , i.e., xneibor ∈ xw

ij , we have xneibor = xij + δ, where
δ follows a Gaussian distribution with zero mean. Thus, yij

could be expanded as:

yij = (xij − 0.5)
∑

w ++
∑

wδ. (S5)

For simplify, we use x̃ and µ̃ to replace x− 0.5 and µ− 0.5,
respectively. Besides, we set A =

∑
w, B = +

∑
wδ, C =

2A, D = 2 (B − ŷ). Having yij = Ax̃+B, the ∂L
∂w will be:

∂L
∂w

= 2E [(y − ŷ) (x− 0.5)]

= 2E [(Ax̃+B − ŷ) x̃]

= 2E
[
Ax̃2 + (B − ŷ)x̃

]
= 2E [A]E

[
x̃2

]
+ 2(E [B]− ŷ)E [x̃]

= 2A(µ̃2 − σ2) + 2(b− ŷ)µ̃

= C(µ̃2 − σ2) +Dµ̃.

(S6)

Since µ and σ are independent and we only concern with
the impact of p (µ), we set Var

[
σ2

]
to a constant. Then the

variance could be expanded as:

Var
[
∂L
∂w

]
= Var

[
Cµ̃2 +Dµ̃

]
+ Var

[
Cσ2

]
= E

[(
Cµ̃2 +Dµ̃

)2]− E
[
Cµ̃2 +Dµ̃

]2
+ const

= E
[
C2µ̃4

]
+�����E

[
CDµ̃3

]
+ E

[
D2µ̃2

]
−
(
E
[
Cµ̃2

]
+����E [Dµ̃]

)2
+ const

= E
[(
Cµ̃2

)2]− (
E
[
Cµ̃2

])2
+ E

[
(Dµ̃)

2
]
− (E [Dµ̃])

2
+ const

= Var
[
Cµ̃2

]
+ Var [Dµ̃] + const

= C2Var
[
µ̃2

]
+D2Var [µ̃] + const.

(S7)

TABLE S4: Network settings of Unpaired CycleR2R.

Basic Encoder E (·) Discriminator Dcolor Discriminator Dbright

Conv: k5c32s2 Conv: k4c64s2 Linear: c1024
Leaky RELU Leaky RELU Leaky RELU
Avg Pool: s2 Conv: k4c128s2 Linear: c1024

Conv: k3c64s2 Leaky RELU Leaky RELU
Leaky RELU Conv: k4c256s2 Linear: c256
Avg Pool: s2 Leaky RELU Leaky RELU

Conv: k3c64s1 Conv: k4c512s2 Linear: c256
Leaky RELU Leaky RELU Leaky RELU

Mean Conv: k4c1s2 Linear: c1
Linear: c256 Mean -
Linear: cCout - -

B. The proof of the equation (29)

Given the µ following the distribution in (25), the Var [µ̃]
could be written as:

Var [µ̃] = Var [µ− 0.5] = Var [µ]

=

∫ 1

0

[µ− E (µ)]
2
p (µ) dµ

=

∫ 1

0

(µ− 0.5)
2
(kµ2 − kµ+

k

6
+ 1)dµ

= F (µ = 1)− F (µ = 0)

= (
1

21
− k

720
)− (− k

144
− 1

24
)

=
k

180
+

1

12
,

(S8)

where F (µ) = k
(

µ5

5 − µ4

2 + µ3

12 − µ2

8

)
+ k

18

(
µ− 1

2

)3
.

Thus, Var
[
∂L
∂w

]
will be:

Var
[
∂L
∂w

]
≈ D2Var [µ̃] + const

= D2

(
k

180
+

1

12

)
+ const

= D2 k

180
+ const.

(S9)

S.IV. RAW-DOMAIN CLASSIFICATION

In this section, we present the application of our Unpaired
CycleR2R model for the classification task in the RAW
domain.

A. Datasets and Baselines

We utilize the identical dataset for training and testing as
in [S1]. For generating the training set, we use ImageNet [S3]
to generate simulated RAW images with noises. As for testing,
a real-world RAW dataset captured by a Google Pixel camera,
e.g., RAWGP, is used. This dataset collects images acquired
with low-light conditions spanning a range of illumination
from 1 lux to 200 lux and containing 1103 images in 40
categories.

We employed the MobileNet-V1 [S4] for classification as
suggested by [S1].

As for the proposed ρ-Vision, Unpaired CycleR2R is first
trained using RGB images in ImageNet (RGBIN) and Google
Pixel RAWs (RAWGP) to generate a simulated RAW dataset
(simRAWIN). This simRAWIN is augmented with noises
and applied to train the RAW-domain classifier MobileNet-
V1. Consequently, the trained RAW-domain MobileNet-V1
examines the testing RAWs from RAWGP for task inference.

As for the Anscombe ISP method proposed in [S1],
ImageNet RGB images (RGBIN) undergo mosaic operations
to generate simulated RAWs, which are then injected with
Gaussian-Poisson noise to produce noisy simRAWs. The train-
ing has two steps: First, the Anscombe ISP is trained with
paired noisy RAW and clean RGB images. Second, Anscombe
ISP and Imagenet pre-trained MoblieNet-V1 are jointly trained
using noisy simRAWs and classification label annotations.
During the testing, the Anscombe ISP converts Google Pixel
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TABLE S5: Classification Accuracy On Google Pixel RAW images.

Method invISP Classifier Top-1 Acc. Top-5 Acc. # Parameters FLOPs
Train Train Test

Anscombe ISP*[S1] - RGBAns-ISP RGBAns-ISP 33.1 58.4 4.28 282
Mosaic RAW*[S1] - simRAWIN RAWGP 27.0 52.5 4.23 181

Unpaired CycleR2R RGBIN, RAWGP simRAWIN RAWGP 35.5 72.1 4.23 181
* Both the Anscombe ISP and Mosaic RAW apply simple mosaic operations to generate RAW samples from the corresponding RGB

images. They don’t need to train the invISP.

Input Image Noise Channel Grad-CAM
Noise Clean w/ Noise Input w/ Clean Input w/ Noise Input w/ Clean Input

R
G

B
R

AW
R

G
B

R
AW

Fig. S3: Visualization of Classifier Response to Noisy and Clean Inputs The “RGB” rows represent the processing using
the Anscombe ISP [S1] where it inputs the RGB image for classification; In contrast, the “RAW” rows stand for the processing
using Unpaired CycleR2R where the RAW images are directly processed. Noise is augmented upon the clean inputs to form
Noisy samples. The “Noise Channel” is the feature channel in the shallow layer “Conv2d 0” that presents the maximum
difference when processing the noise and clean inputs respectively. The Grad-CAM [S2] visualizations are based on the last
convolutional layer “Conv2d 13 pointwise”. A comparison between the “Noise Channel” under different inputs reveals that
the RAW-domain classifier is adept at extracting noise patterns, effectively separating noise from the signal, which results
in Grad-CAM visualizations that more closely resemble the clean input. In contrast, the RGB-domain classifier struggles
to disentangle noise from the signal due to the complex non-linear processing by the Anscombe ISP, leading to significant
deviations in Grad-CAM under noisy conditions and consequently to misclassification.
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RAW images (RAWGP) to the corresponding RGB format
(RGBAns-ISP) for classification.

As for the Mosaic RAW method [S1], ImageNet images
are simply mosaiced to drive RAW samples to form the
simRAWIN. Noise is then augmented onto the simRAWIN to
train the RAW-domain classifier. Subsequently, samples in
(RAWGP) are tested directly.

Note that noise augmentation closely follows the studies
in [S1] for all approaches.

B. Comparative Studies of RAW-domain Classification

Table S5 reports the image classification under low-light
illumination with high noises. The proposed ρ−V ision using
Unpaired CycleR2R demonstrates the compellingly superior
performance to the approaches, e.g., Anscombe ISP and Mo-
saic RAW, provided by [S1].

The gain of the proposed Unpaired CycleR2R to the Mosaic
RAW owes the better characterization of real-life RAW images
in training/devising the invISP to generate realistic simRAWs.
The Mosaic RAW approach [S1], instead, only applies the
basic mosaicking by simply neglecting the impacts of gamma
correction and white balance that are vital in the transforma-
tion between RGB and RAW space..

The improvement of the Anscombe ISP to the Mosai RAW
is due to the mapping between a noisy RAW image and the
corresponding clean RGB sample offered by the Anscombe
ISP, which significantly helps the subsequent task.

The gain of the proposed Unpaired CycleR2R to the
Anscombe ISP is attributed to the better noise separation
and suppression in the RAW domain. This improvement is
visually corroborated in Fig. S3, where the “Noise Channel”
columns under the Unpaired CycleR2R method (RAW row)
exhibit a more apparent distinction between noisy and clean
features. The efficacy of our model in noise modeling and
separation in the RAW domain, as proofed in [S1], is
further evidenced by the Grad-CAM visualizations. These
visualizations of noisy inputs are similar to those generated
from clean inputs, illustrating the model’s ability to preserve
essential image characteristics despite noise. In contrast, the
Anscombe ISP (RGB row) reveals a significant disparity in the
Grad-CAM outputs when comparing noisy and clean inputs,
which may lead to classification errors.

Our Unpaired CycleR2R achieves this superior noise
discrimination without increasing computational complexity,
thereby maintaining the same level of FLOPs as the Mosaic
RAW (lower than the Anscombe ISP).

S.V. RAW-DOMAIN SEGMENTATION

In the main text of this paper, the detection task is success-
fully executed in the RAW domain with superior performance
to that using the same RGB-domain model. Here we explore
the feasibility of RAW-domain segmentation. Similar to the
discussions in Sec. 5.2 and 6.2, we first demonstrate that
the segmentation model trained with simRAW images can
directly infer the segmentation cues upon the real RAW
images. Second, a few-shot finetuning simRAW-pretrained
segmentation model using limited labeled real RAW images

further improves its performance and shows consistent gains to
the model trained from scratch. Finally, ablation studies show
that gamma correction is also vital for segmentation tasks in
the RAW domain.

A. Datasets

Cityscapes [S5] is a large-scale dataset recorded in different
urban streets in Europe containing 5,000 frames with high-
quality pixel-level segmentation annotations. Considering the
different traffic signs in China where the MultiRAW is cap-
tured, we use a communal subset including road, building,
fence, traffic light, sky, person, car, truck, and bus for evalu-
ation. Following the setup in Sec. 5.2 of the main paper, we
convert the RGB samples, a.k.a RGBc, into simRAW image set
simRAWc to train/refine RAW-domain segmentation model.

B. Training Details

We use the famous HRNetv2 [S5] as our segmentation
network. All segmentation models are optimized by a SGD
optimizer with 0.9 momentum, 5 × 10−4 weight decay and
initial learning rate of 10−2 dropped into 10−4 linearly. The
batch size is set as 8, and inputs are randomly cropped into
512× 1024 with random flip augmentation. The experiments
are conducted using an Nvidia 3090Ti GPU.

C. Comparative Studies of RAW-domain Segmentation

Table S6 and Fig. S4 compares our Unpaired CycleR2R
and other methods using invISP approach [S1, S1, S1, S2] and
domain-adaptation (DA) solution [S6, S7]. It can be seen that
Unpaired CycleR2R outperforms the state-of-the-art CycleISP
by a significant margin of 7mIoU and improves the IoU across
all classes of objects. More gains are presented against other
approaches.

Our model also surpasses the RGB Baseline on mIoU. Note
that this RGB Baseline is prevalent in real-world applications.
Such a convincing performance suggests the potential for
RAW-domain segmentation. We also observe the lower IoU
for some specific classes of objects between our method and
the RGB Baseline. This is probably due to the optimization
strategy for maximizing the overall performance but not bal-
ancing each class. This is an interesting topic for future study.

Apparently, inputting real RAW images to the RGB-domain
segmentation model directly for task execution is a failure, as
exemplified in the Naive Baseline, e.g., mIoU of 11.1 versus
the mIoU of 47.5 in the RGB Baseline, which is due to the
large discrepancy between the RGB-domain and RAW-domain
models.

Implementation Friendliness. As aforementioned in
Sec. 5.2, our method could generate simRAW images to train
task-dependent models. However, DA-based approaches [S1,
S1] designed for object detection tasks could not be applied
to segmentation tasks. And DA-based segmentation meth-
ods [S6, S7] could not support the detection task either.
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RAW image ■ InvGamma [S2] ■ CycleISP [S1] ■ CIE-XYZ [S1] ■ MBISPLD [S1]

Ground-truth ♦ DAFormer [S6] ♦ HRDA [S6] ♠ RGB Baseline ⋆ Ours

Road Build. Fence Tr. L. Sky Person Car Truck Bus N/A.

Fig. S4: Qualitative Visualization of Pretrained RAW Segmentation Model. Example predictions show better recognition
of buildings, sky, and traffic lights by our Unpaired CycleR2R on Cityscapes RGB → iPhone RAW. Gamma correction and
brightness adjustment have been applied to RAW images for a better view.
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TABLE S6: mIoU (Mean Intersection over Union) of Segmentation on the testing set of iPhone RAW images. RGB-domain
segmentation model is trained using original RGB images in Cityscapes [S5] (e.g., RGBc); Various simRAW datasets associated
with RGBc are generated using different methods which are marked as simRAWc to train RAW-domain segmentation model.
The testing RAW images in iPhone RAW RAWi and their paired RGB images in RGBi converted using built-in iPhone ISP
are tested accordingly. HRNetv2 [S5] is used as the base segmentation model. ♠ Baselines, ♦ Domain Adaptation Solutions,
■ invISP Methods, ⋆ Ours.

Method invISP Segmentor Road Build. Fence Tr. L. Sky Person Car Truck Bus mIoU
Train Train Test

♠ Naive Baseline - RGBc RAWi 0.3 21.6 14.8 5.7 20.7 0.4 30.0 0.4 6.2 11.1
♠ RGB Baseline - RGBc RGBi 89.6 65.1 35.6 20.7 96.1 11.1 62.9 21.5 25.3 47.5

♦ DAFormer (CVPR’22) [S6] - RGBc, RAWi RAWi 75.8 49.5 15.2 1.5 90.0 5.3 58.3 0.2 6.3 32.9
♦ HRDA (ECCV’22) [S7] - RGBc, RAWi RAWi 73.8 69.1 38.5 12.3 80.6 15.0 51.2 16.2 20.9 42.0

■ InvGamma (ICIP’19) [S2] RGBi, RAWi simRAWc RAWi 47.5 55.7 31.2 8.3 90.0 7.3 23.9 11.2 17.6 32.5
■ CycleISP (CVPR’20) [S1] RGBi, RAWi simRAWc RAWi 84.8 63.9 35.0 18.0 86.3 9.7 55.7 18.0 20.6 43.6
■ CIE-XYZ Net (TPAMI’21) [S1] RGBi, RAWi simRAWc RAWi 78.7 64.4 36.7 3.0 84.2 5.4 48.6 2.3 15.4 37.6
■ MBISPLD (AAAI’22) [S1] RGBi, RAWi simRAWc RAWi 72.5 60.8 39.4 7.3 78.6 13.3 41.0 17.7 20.8 39.0

⋆ Unpaired CycleR2R RGBc, RAWi simRAWc RAWi 88.9 70.5 40.9 24.7 95.5 21.4 64.3 19.1 30.0 50.6
Build. ← Building; Tr. L. ← Traffic Light.
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Fig. S5: Few-shot finetuning using limited camera RAWs.
The simRAW-pretrained HRNetv2 [S5] is obtained by using
samples in simRAWc generated by our Unpaired CycleR2R,
which is then finetuned using limited camera RAW images;
and the “scratch” model is randomly initialized and then
trained using the same number of labeled real RAW images.

D. Comparative Studies of Few-Shot Finetuning

The performance of the simRAW-pretrained segmentation
model could be further boosted by feeding more real labeled
RAW images. We further finetune our segmentation model
using our MultiRAW dataset (iPhone XSmax) with all classes.
As depicted in Fig. S5, the segmentation accuracy is improved

and consistently outperforms the scratch model which is
initialized randomly and then trained using the same labeled
real RAW images.

S.VI. EXTRA QUANTITATIVE VISUALIZATION

In Fig. S6, we present a visual comparison between our
simulated RAW images and real RAW images. We also offer
more qualitative visualizations of our lossy RIC at low Bits-
rate and high Bits-rate in Fig. S7 and Fig. S8 respectively.
Similar to the results in the main content of this work,
we can clearly observe the subjective improvements of the
proposed lossy RIC compared to the HEVC and VVC. Es-
pecially for the traffic light and car information, our lossy
RIC provides sharper and less noisy reconstructions closer
to the ground truth samples. Also, we give visualizations of
progressive decoding using our lossless RIC within various
cameras in Fig. S9-S11. Our lossless RIC could provide low-
resolution previews for different cameras (iPhone XSmax,
Huawei P30pro, and asi 294mcpro) and different scenes (both
daylight and nighttime), which is helpful for professional
photography and network transmission.
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Fig. S6: Evaluation of the Illumination Estimation Module (IEM). Demosaicing has been applied to all images to enhance
visibility. (a) Adapting IEM to generate the simRAW’s coverage using the mean color, where the color of each point ϕi,
θj represents the average color of a simRAW generated by sampled illumination parameters ϕi, θj . In contrast, red markers
indicate the average color of real RAW images. It clearly reveals that adapting IEM can cover all real-world illumination
conditions in real RAW data. (b) simRAW examples generated by our Unpaired CycleR2R with various ϕ, θ, illustrating the
IEM’s ability to produce a wide range of illumination variations. (c) The corresponding RGB image fed into the invISP of
our Unpaired CycleR2R, which is from the BDD100K dataset. (d) Random real RAW images from the multiRAW dataset,
displaying the natural variability in illumination and color temperature. (e) Simulating a RAW image without using IEM, which
can only produce a single simRAW per RGB input due to the absence of probabilistic illumination estimation. (f) Simulating
RAW images by injecting noise to E−1(·) outputs, which can produce multiple simRAW samples without requiring IEM but
demonstrate unrealistic diversity induction in RAW Images. E−1(·) is defined in invISP (see Fig. 2 in the main paper).
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HEVC HECV-10bits Ours
0.010 bpp / 41.73 dB 0.010 bpp / 42.28 dB 0.010 bpp / 44.89 dB

VVC VVC-12bits GT
0.010 bpp / 42.94 dB 0.010 bpp / 43.87 dB 12 bpp / -

Fig. S7: Qualitative Visualization of Lossy RIC at Low Bits-rate. Reconstructions and close-ups of the HEVC, VVC, and
our method. Corresponding bpp and PSNR are marked. Gamma correction and brightness adjustment have been applied for a
better view. Zoom for better details.
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HEVC HECV-10bits Ours
0.031 bpp / 44.73 dB 0.031 bpp / 46.05 dB 0.032 bpp / 48.46 dB

VVC VVC-12bits GT
0.032 bpp / 45.25 dB 0.032 bpp / 46.95 dB 12 bpp / -

Fig. S8: Qualitative Visualization of Lossy RIC at High Bits-rate. Reconstructions and close-ups of the HEVC, VVC, and
our method. Corresponding bpp and PSNR are marked. Gamma correction and brightness adjustment have been applied for a
better view. Zoom for better details.
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0.14 bpp / 25.55 dB 0.21 bpp / 29.08 dB 0.48 bpp / 34.78 dB 1.53 bpp / 44.12 dB 5.62 bpp / GT

0.13 s / 22.46 dB 0.24 s / 25.75 dB 0.35 s / 30.93 dB 0.50 s / 37.45 dB 0.67 s / GT

0.05 bpp / 31.98 dB 0.11 bpp / 35.64 dB 0.33 bpp / 40.81 dB 1.17 bpp / 48.76 dB 4.46 bpp / GT

0.11 s / 20.58 dB 0.22 s / 22.32 dB 0.36 s / 24.13 dB 0.58 s / 26.76 dB 0.73 s / GT

Fig. S9: Qualitative Visualization of Lossless RIC Progressive Decoding (iPhone XSmax). The gradual reconstruction of
RAW images and their corresponding RGB images converted by an in-camera ISP. Bits per pixel (bpp) / PSNR (dB) is shown
under RAW images. Decoding latency (s) / PSNR (dB) is also listed below RGB images. PSNR is derived against the GT
(ground truth). Gamma correction and brightness adjustment have been applied for a better view. Zoom for more details.
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0.07 bpp / 34.41 dB 0.13 bpp / 38.60 dB 0.36 bpp / 44.27 dB 1.20 bpp / 51.06 dB 4.32 bpp / GT

0.13 s / 24.85 dB 0.23 s / 28.48 dB 0.34 s / 33.24 dB 0.59 s / 38.75 dB 0.74 s / GT

0.05 bpp / 31.70 dB 0.11 bpp / 34.77 dB 0.37 bpp / 39.78 dB 1.40 bpp / 45.96 dB 5.45 bpp / GT

0.18 s / 24.34 dB 0.23 s / 26.32 dB 0.36 s / 27.88 dB 0.58 s / 29.95 dB 0.71 s / GT

Fig. S10: Qualitative Visualization of Lossless RIC Progressive Decoding (Huawei P30pro). The gradual reconstruction
of RAW images and their corresponding RGB images converted by an in-camera ISP. Bits per pixel (bpp) / PSNR (dB) is
shown under RAW images. Decoding latency (s) / PSNR (dB) is also listed below RGB images. PSNR is derived against the
GT (ground truth). Gamma correction and brightness adjustment have been applied for a better view. Zoom for more details.
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0.03 bpp / 29.67 dB 0.08 bpp / 33.23 dB 0.25 bpp / 36.85 dB 1.08 bpp / 43.69 dB 3.58 bpp / GT

0.12 s / 19.67 dB 0.23 s / 22.18 dB 0.34 s / 25.26 dB 0.59 s / 29.89 dB 0.82 s / GT

0.02 bpp / 31.68 dB 0.04 bpp / 35.41 dB 0.09 bpp / 40.65 dB 0.37 bpp / 48.04 dB 1.05 bpp / GT

0.12 s / 20.49 dB 0.23 s / 22.57 dB 0.39 s / 25.42 dB 0.60 s / 29.72 dB 0.80 s / GT

Fig. S11: Qualitative Visualization of Lossless RIC Progressive Decoding (asi 294mcpro). The gradual reconstruction of
RAW images and their corresponding RGB images converted by an in-camera ISP. Bits per pixel (bpp) / PSNR (dB) is shown
under RAW images. Decoding latency (s) / PSNR (dB) is also listed below RGB images. PSNR is derived against the GT
(ground truth). Gamma correction and brightness adjustment have been applied for a better view. Zoom for more details.


